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Abstract 

This paper addresses the problem of redundcint gravity niecisureinents for reduction of mecrsuretnent errors. 
The approach exploits constraints imposed upon the conrponents of the grcivity grcidient tensor 0)) the 
conditions of integrability needed,for reconstruction of the grcivity potenticil. It lias been demonstruted that 
the total error of noisy nieasurenients can be reduced by 2.5% using the best j;t into the integrability 
constraints. 

1. INTRODUCTION 

Recent success in the development of a unique and innovative technology of atom trapping and 

laser cooling in combination with atom intereferometry has opened up a fundamentally new 

approach to detection of the rotations and accelerations, and has led to the success in the 

development of matter wave gravimeters and gradiometers (Adams, 1994; Kasevich and Chu, 

1992; Snadden et al., 1999) 

Use of highly accurate and space born gravity measuring devices opens a new era in geophysics 

and space exploration (Chan and Paik, 1992). It can successfully facilitate space reconnaissance 

operations for the detection of suspicious objects on the ground and related intelligence activities 

needed for global information superiority (Bell, 1998). 

However, despite the unprecedented accuracy of the new class of gradiometers, there is still a 

number of sources of noise such as atmospheric drag, inertial noise, attitudinal error, induced 

gravity noise, Eotvos-effect induced noise etc (Peters et a]., 1999; Clauser, 2000; Young et al., 

1997). Obviously noisy measurement decreases the effectiveness of the whole approach. 

Therefore, minimization of noisy errors is one of the main problems in this new technology. 

In this paper, we propose a methodology (illustrated by the proof-of-concept example) for 

reduction of the total error of gravity gradient tensor using redundant measurements. For that 

purpose we will start with addressing the following problem: what is the degree of redundancy in 
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values of the gravity gradient tensor? In other words, what is the minimum of necessary 

measurements of the components of this tensor which allows one to reconstruct the gravitational 

potential? The problem arises from the fact that gravity gradient tensor is derived from a scalar 

potential of gravitational field (Parker, 1994). Therefore, the components of gravity gradient tensor 

cannot change independently: they must satisfy the integrability conditions which impose 

geometrical constraints upon their changes. Thus the purpose of the second section is to formulate 

these constraints. Based upon them, one can develop an optimal strategy for the measurements of 

the gravity gradient tensor which includes the decisions about how many measurements of each 

component can be ignored without loss of information about the potential and how the redundant 

measurements can decrease an error in the reconstructed potential. These problems will be 

analyzed in the third section. In the fourth section, we will formulate the methodology for 

reduction of the total error by the best fit into the integrability constraints. The fifth section will be 

devoted to a proof-of-concept example and the results of computer simulations. 

2. INTEGRABILITY CONSTRAINTS 

General ,formalism 

We will start with a brief review of the gravitational field formalism. A gravitational potential 

q ( Z j  at the point Zcreated by a mass distribution comprised of N point masses m, respectively, 

and located at the positions X, is 

N 
mi c p ( X )  = -G C - 

i=l I x - xi I 

where G is constant of gravitational interaction. The first gravity gradient associated with cp(Z) 

forms a potential vector field 

g(?> = -VCp(?> (2) 

The second gravity gradient (gravity gradient tensor) induced by the vector field (2) in invariant 

form is 
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Coordinate representations for the first g, (2) = -d,cp(X) and the second l-@ (2) = -dag, (2) 

gravity gradients are 

3(X-X”),(X-X”), -8aap 12-2 12 rup (2) = - G C  m, 
1=1 I X - X L  I” 

(4) 

Zero trace of gravity gradient tensor follows from the identity 

representing the fact that the gravity field does not have sources or sinks, and therefore its 

Laplacian is zero. 

First gradient constraints 

Let us first analyze the integrability constraints imposed upon the components of the first gradient 

(2). The origin of these constraints comes from the fact that three components of the vector of 

gravitational acceleration are derived from one scalar c p < X ) .  Therefore, they cannot be 

independent. Two additional constraints must be imposed upon them. The integrability constraints 

follow from the identity 

and can be rewritten in Cartesian coordinates as 

These equations indicates the symmetry of gravity gradient tensor which can be written as 
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Now the physical meaning of the integrability constraints (7) becomes clear: they enforce 

equalities of the mixed derivatives of the gravity potential q ( X )  with respect to the coordinates 

{x,}, Le., they provide the conditions for integrability which allow one to reconstruct q(X) from 

the components of the first gradient (2). However, the constraints (7) are not independent since 

they are bounded by the following scalar identity 

Thus, only two constraints out of three in equations (7) are truely independent, and therefore, the 

gravity gradient vector has only one degree of freedom, and that is consistant with the fact that the 

gradient is derived from a scalar q ( X ) .  The identity (9) can be interpreted as a vector version of 

the Bianchi identities, which bound the integrability constraints. As in tensor analysis, equation (9) 

involves higher order space derivatives; this means that in an initially chosen point of space, 

x ~ , x ~ , x ~ ,  the constraints (7) are independent; however, as we move to the neighboring points, the 

changes of these constraints become correlated via equation (9). 

Second gradient constraints 

The, integra-hility constraints for the secnnd gra.dient fnllow from the identity (Za.kj 1994): 

v x r(x) = v x(vg(x)) E o (10) 

and can be written in the Cartesian coordinates as 

These nine integrability constraints are not independent because of the following vector identity 
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which bounds the integrability constraints in the same way as equation (9) bounds the constraints 

(8). Equations ( I  1)  and (8) form a complete system of twelve integrability constraints. However, 

because of the Bianchi identities (9) and (12), only eight of them are independent. Therefore, nine 

components of the gravity gradient tensor (3) are bound by eight constraints, and the gravity 

gradient tensor has only one degree of freedom which, again, is consistent with the fact that this 

tensor is derived from a scalar cp<X) .  As in the case of the gravitational vector, the constraints (8) 

and (11) are independent in an initially chosen point of space, however, as w e  move to the 

neighboring points, the changes of these constraints become correlated via equations (9) and (12). 

The geometrical meaning of the integrability constraints ( 1  1) is the same as for the constraints (8): 

they result from the equality of the mixed derivatives aa3,d,(p = d,d,d,(p, etc., which allows one 

to reconstruct the gravity potential (p from the components of gravity gr a d' lent. 

Finally, the twelve integrability constraints (8) and (1 1) must be supplemented by the constraint 

( 5 )  which can be rewritten in the form 

s@r, = o (13) 

One should recall that this is not an integrability constraint: it follows from the absence of sources 

and sinks in the gravity field. 

3. MEASUREMENT STARATEGY 

One of the advantages of state-of-the-art gradiometers is that they can measure the components of 

the gravity gradient tensor ( 3 ) ,  which are the most sensitive to changes of mass densities. Now one 

can ask the following question: what is the minimum number of measurements which is sufficient 

for reconstruction of the gravity potential, and thereby the rest components of the gravity gradient 

tensor, and how the redundant measurements can help to reduce errors of noisy measurements? 

We will start with the first part of this question. Let us assume that one has to reconstruct gravity 

gradient tensor in n3 points of a cube. If n3 is sufficiently large, one can come up with a simple 

asymptotic estimate for the minimum number of measurements N 
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Indeed, as shown in the previous section, the gravity gradient tensor has only one degree of 

freedom, and therefore, only one component of the tensor at each point is sufficient while the rest 

8n3 components are found from the constraints (8) and ( 1  1). However, since the constraints (1 1)  

are differential, some additional measurements (which can be associated with initial conditions) 

are required. For that purpose, suppose that x ~ , x i , x c ~  is the initial point. Then one has to make five 

measurements to reconstruct all the nine components of the gravity gradient tensor, for instance 

The rest components are easily found from the algebraic constraints (8) and (13). If the same 

measurements (15) are performed in n points along the x,, one finds the gravity gradient tensor 

~ J ( x ~ , x ; , x ~ )  and all its derivatives a,r,. Then, based upon the intergability constraints (1 l),  one 

can reconstruct l-ll,rlz and r,, along the line x:),x: + Ax;,x:.  After two additional 

measurements, for instance, r,, and rz3, at each point of the same line and with the help of the 

constraints (8) and (13), one can reconstruct the gravity sradient tensor along this line. Continuins 

this process by moving toward new points on the plane x ~ , x i , x ~ ~ ,  one reconstructs the tensor- 

gradient at each point of this plane. This process will require N' = 5n + 2n(n- 1) measurements. 

Finally, at the rest n2(n - 1) points one has to measure only one component of the gravity gradient 

tensor, which is d3r33. Indeed, moving forward along the axis x3 starting with x+;, and involving 

the constraints (X), (1 1) and (13), one finds the rest of the components in all the volume n3. Thus, 

out of 9n3 components of the gravity gradient tensor, only 

N = 512+2n(~~-l)+n ' (n-1)  
=n3+n2+3n  

measurements are required. Obviously n3 +nz  + 3n + n3 i f  n -+ 00 i.e., one returns to the 

equation (14). 
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Another advantage of exploiting the integrability constraints is in reducing the total error of noisy 

measurements by making redundant measurements. Indeed, as follows from equation ( I  6), if the 

number of performed measurements No > n3 + n' + 3n, then there are No - n3 - n2 - 372 

redundant measurements, and they can be used for reducing the noisy measurements in the 

following way. Let us introduce the following function to be minimized 

sub-ject to the constraints: 

f ;  ({rap }) = 0 > (rap } = r, 1 9 r,, , . . . $,,, > i = 12 . . . P (18) 

where l7; are the results of noisy measurements, and S& are the corrected values of the 

corresponding components. The idea of the approach is that the corrected values l-; must satisfy 

the constraints (Is), and at the same time, must be as close as possible (in terms of the least 

square) to the results of measurements r;. Introducing the Lagrange multipliers X,, one faces the 

following problem: find corrected values ri of the gravity gradient tensor in n 3  points hasrd 

upon noisy measurements r; by minimizing the following function 

It should be noticed that, strictly speaking, some of the constraints (18) are differential; however, 

since the values of r& are defined only in discrete n3 points, it is reasonable to represent the 

derivatives 3cp via their values at the corresponding discrete points using linear interpolation. 

After that, all the constraints become algebraic. The minimum of M in equation (1 9) leads to a 

system of linear algebraic equations with respect to r ,  following from the conditions 

7 



4. ERROR MINIMIZATION BY REDUNDANT MEASUREMENT 

In this section we will develop a methodology for reducing the total error of noisy measurements 

using redundant measurement following the ideas presented in the previous section. For the 

purpose of proof-of-concept, we will restrict ourselves by the case of three points on a plane 

x ~ , x ~ , x ~ .  Thus, since the gravimeter measures components of the tensor-gradient rN , one can 

take advantage of the fact that these components are not independent because they must satisfy the 

integrability constraints (8), ( I  1)  and the zero sink-source constraint (13). Indeed, suppose that the 

points of measurements are located on (x, y)-plane, with the coordinate lines x1 and x, .  We will 

consider only three points ( i , j )  ; ( i + l , j )  and ( i , j + l )  in order to illustrate the proposed 

approach. For simplicity, we will assume that the symmetry of the gravity gradient tensor has been 

already imposed, i.e., we will consider only six components of the tensor rN . Hence, the problem 

will be stated as follows: Suppose 3x6 components r2,Fz13Jand r2J+1 of the tensors rb$ at 

three points are given as a result of measurements. Assume that these measurements have errors, 

i.e., 

Let us minimize these errors 

using the compatibility equations (8) and (1 1) as constraints imposed upon the exact values 

roV roZtlJ,... etc. First of all, one has to realize that out of 9 constraints of equation ( I  l ) ,  only 

three are applicable, since we are dealing with the compatibility on the surface (x,y).  Ignoring the 

curvature of this surface, one can use only the constraints which follow from the third row in the 

matrix (1 l ) ,  i.e., 

u p '  N 
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a,r,, - a2rl, = 0, a,r2, - a,rl, = 0,  alr2,, - a,r,, = o (23)  

However, in order to apply these differential constraints to the measurement data, one should 

present the latter in an analytical form. Using a simple linear interpolation, one can write 

Then the constraints (23) take the form 

These equations should be supplemented by the algebraic constraints ( I  3) written for each point: 

So, now we need to update the measurements r; so that after substituting them into the equations 

(25),  (26), the mismatch will be minimal. In other words, we have to find such new updated values 

of measurements Top which minimize the sum 

subject to the constraints (25) and (26). Introducing the Lagrange multipliers for these constraints 

as: AI, ..., k6 one can rewrite equation (27) in the form 
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The minimum of M requires that 

where 0;p = 1,2,3 . The values of updated measurements rOlp must satisfy the following system of 

linear equations 

As follows from equations (30), two components of the gravity gradient, namely, l74,'lJ and ri;+', 
are not updated: they are equal to the measured values r 13 and r 23 , i.e. the 9-th and 17-th 

equations out of 18 equations (30), are already solved, and they can be excluded from the further 

consideration. Such an asymmetry with respect to different components of the gravity gradient is 

caused by the asymmetry of the problem itself. Firstly, there is no constraint in the direction of x3 

coordinate. Secondly, among three points of measurement: (i, j )  ; (i + 1, j )  and (i, j + l), the first 

point plays the role of a center of linear interpolation. 

i l + l , J  i l ,  J+ 1 
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Thus, now the rest 16 equations in (30) should be solved simultaneously with the compatibility 

equations (25) and (26). The system can be written in the following matrix form 

where D is (22x22) matrix and 3,s' are 22 element vectors consisted of components of gravity 

gradient tensor. The solution to the problem is reduced to inversion of the matrix D 

The proposed methodology can be generalized to an arbitrary number of points of measurements 

without any significant changes. 

5. NUMERICAL EXPERIMENT 

In order to illustrate the proposed methodology, we will perform some computer simulations. 

First, let us create synthetic data of measurement for gravity gradient tensor. For thi? ptirpose we 

take a point mass object, and construct gravity gradient data. We will call these data theoretical 

gravity gradient data. In terms of the equation (21) they will correspond to the values roz, To$1J 

and To$+'. 

Second, we create errors for each component with ACi, AC;',' and ,E;;"' assuming that 

AI& = ArM , AGi',' = 0 and ArZ,;',' = 0. The values of the error should be randomly distributed 

over the 16 components, while their absolute values should be of the same order as the expected 

errors of the gradiometer. 

Adding the errors to the theoretical values, we create synthetical measurement data 
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or, utilizing the compressed notation 

where index i indicates the number of the corresponding components of the gravity gradient 

tensor (For example, in case of three nearest points on (x,y)-plane we have i=1, ..., 16). The 

accuracy of the measurements (34) can be characterized by the variance with respect to yo 

(35 )  

where n = 16 is the number of the considered components of the gravity gradient tensor. The next 

step of the proposed methodology is to construct vectors from the components of gravity gradient 

tensor for the nearest points and to update the values of the measurements q using the equation 

As a resu!t we obtain a new enor 

and the variance 

where i = 1 ,..., n ,  and n = 16. 

The idea of the proposed application is to show that the total error of the updated measurements r, 
is smaller than those of the original measurements qA, i.e. that S, < S,. 
Computer simulation. 

We start with the modeling of gravity gradient tensor rap (equation (3)) for point-like object with 

the mass M = G-l, where G is gravitational constant at the distance 200 km from the source. The 
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components rG are constructed on 500x500~50 grid with grid spacing 5000 and 3000 meters 

(Fig. 2). For computer analysis of the model we select 20x20~50 grid at the center of the larger 

one (Fig. 1) where the variation of gravity gradient components is maximal. We vary the 

components of gravity gradient tensor with random function fm, ,d .  The amplitude of random 

function is taken as 3% of the maximal value of the gravity gradient tensor at each point of the 

small grid AGO = f,a,2d .Tap. We assume here that synthetically modeled data are experimental 

ones and write the result as I-@ = Tap + AraO. As the next step, we construct 16-component vector 

3' with q' ( i  = 1, ..., 16 ) in the order, which is given by 

3'=[ri ... r;, o o o o o 01 (39) 

and 22-component vector 3 constructed with unknown elements 7 ( i  = 1, ..., 16 ) and Lj 

( j = 1, ..., 6 ): 

3 = [r, . . 

Then (16xl6)-component inversion matrix D-' is found with constraints. After the inversion we 

obtain the matrix D-'. For the analysis, we applied D-I to the vector 3' (39) in the small (20x20) 

region and found the components of vector 3 (equation 40) for each point of this region as 

3 = D-l3'. 

For estimation of the modeled data we use the equations (35) and (38). The result is given on Fig. 

3 for the grid spacing 3000 meters and Fig. 5 for the grid spacing 5000 meters. Standard 

deviations S, (marked with the boxes) and 23, for each 400 points describe experimental and 

theoretical results for the computer simulations. As follows from Fig. 3 and Fig. 5 ,  the error 4 is 

always smaller then S,. For the quantitative estimation of the improvement we use the ratio 

(S,  - $) / 4 for each point on small grid. These results are given on Fig. 4 for the grid spacing 

3000 meters, and on Fig. 6 for the grid spacing 5000 meters. 

13 



GGT.xx 
500 

400 

300 

2a0 

0 
0 100 200 300 400 500 

Fig. 1 Profiles of $, component of grrivity grudimt tensor. A small grid of the rize 20x20t.50 

is selected in the area ofthe riiaxinial varicitions of gravity grcidient. 

6. CONCLUSION 

Thus, it has been proposed a new methodology for gravity gradient data improvement based upon 

combining measurement data and the integrability constraints. Two alternative strategies were 

proposed: reconstruction of the gravitational field based upon the minimal number of 

measurements, and reconstruction of the total error of noisy measurements exploiting the 

redundancy of the measurements of the gravity gradient tensor. A general formalism illustrated by 

a computer experiment has been developed. Computer analysis of output data showed that the 

developed formalism allows us to analytically improve the experimental gravity gradient data by 

up to 25%. 
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Fig. 2 Surfaces for  the components of gravity gradient tensor with 5000 meter grid spacing. 
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Fig. 3 Experimental S ,  (boxed) and theoretical S, curves for standard deviations show the improvement of 

measured gruvity gradient data for  3000 meter grid spacing 
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Fig. 5 Experimental S, (boxed) and theoretical S, curves for  standard deviations show the improvement of 

measured gravity gradient data fo r  5000 meter grid spacing 
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Fig. 6 The improvement [(S,-S2)/S2] x 100% of the measurement of gravity gradient tensor for 5000 meter 

grid spacing 
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